

## FLAVONOL GLYCOSIDES FROM *EPIMEDIUM SAGITTATUM*

MIZUO MIZUNO, NORIO SAKAKIBARA, SAKURA HANIOKA, MUNEKAZU IINUMA, TOSHIYUKI TANAKA, XIN-SHUNG LIU\* and DA-WEN SHI†

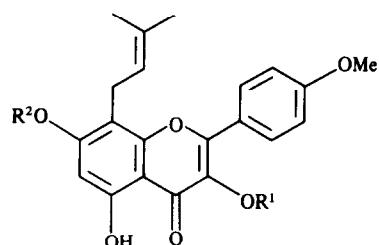
Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome Gifu 502, Japan, \* Anhui Provincial Institute for Drug Control, Hefei, China, †Department of Pharmacognosy and Pharmacology, Faculty of Pharmacy, Shanghai Medicinal University, Shanghai, China

(Received in revised form 3 March 1988)

**Key Word Index**—*Epimedium sagittatum*, Berberidaceae, anhydroicarinin 3-O- $\beta$ -D-glucosyl-(1 $\rightarrow$ 2)- $\alpha$ -L-rhamnoside, anhydroicarinin 3-O- $\beta$ -D-xylosyl-(1 $\rightarrow$ 2)- $\alpha$ -L-rhamnoside, anhydroicarinin 3-O- $\beta$ -glucosyl-(1 $\rightarrow$ 2)- $\alpha$ -L-3-acetyl-rhamnoside, sagittatoside A, sagittatoside B; sagittatoside C

**Abstract**—Three new flavonol glycosides, designated sagittatosides A, B and C, were isolated from the aerial parts of *Epimedium sagittatum* in addition to epimedins A, B and C. Their structures were established by spectroscopic methods

### INTRODUCTION


Two new flavonol glycosides, anhydroicarinin 3-O- $\alpha$ -rhamnoside and icarinin 3-O- $\alpha$ -rhamnoside together with icarisid I and icaritin were shown as the constituents of *Epimedium sagittatum* in our previous paper [1]. Further investigation of the aerial parts of *E. sagittatum* revealed three new flavonol glycosides (1-3), sagittatosides A, B and C, in addition to epimedins A, B and C (4-6). In this paper their structural elucidation is described.

### RESULTS AND DISCUSSION

By repeated separation of 35% ethanolic extract of the aerial parts of *Epimedium sagittatum* by use of preparative middle pressure liquid chromatography, compounds 1-6 were isolated as pure forms, and deduced to be flavonol glycosides from the Shinoda test.

Compound 1, mp 168-169° was obtained as a pale yellow amorphous powder. The structure of the aglycone moiety was deduced from the  $^1$ H NMR spectrum. The presence of two two-proton doublets at 7.12 ppm ( $J$  = 8.4 Hz) and 7.87 ( $J$  = 8.4 Hz) and a one-proton singlet at 6.31 ppm suggested that the aglycone must be based on kaempferol with a substituent carbon linked at C-8. The characteristic signals based on an isopentenyl group as the substituent were observed at 1.62 and 1.81 ppm in each three-proton singlet, 3.13 ppm in a two-proton multiplet and 5.15 ppm in a one-proton broad triplet ( $J$  = 5.0 Hz). Since the above  $^1$ H NMR spectrum further showed the presence of a methoxy group, the aglycone must be anhydroicarinin. The EI mass spectrum supported the proposed structure from the fragments ( $m/z$  368, 353, 313, 165 [ $A_1 - C_4H_7$ ] $^+$  and 135 [ $B_2$ ] $^+$ ) formed after retro-Diels-Alder cleavage. In the UV spectrum, bathochromic shifts were observed 61 nm of Band I and 10 nm of Band II on addition of aluminium chloride and of sodium acetate, respectively, which indicated not only that the phenolic groups at C-5 and C-7 were unsubstituted, but also that the sugars were substituted only at C-3. The position of the sugars is clear from the

$^1$ H NMR spectrum in which the chemical shift of proton at C-6 appeared at ca 6.64 ppm in the case of the flavonol glycosides substituted by glucose at C-7 like icarisid I (8) and icaritin (9) [1]. On the other hand the relevant shift of 1 was observed at a rather higher field at 6.36 ppm, due to protection of the phenolic group. The  $^{13}$ C NMR spectrum showed that two hexoses were attached at C-3 (Table 1). The chemical shifts as well as those of anomeric protons in the  $^1$ H NMR spectrum; a one-proton doublet at 5.53 ppm ( $J$  = 1.6 Hz) (rhamnose) and a one-proton doublet at 4.24 ppm ( $J$  = 7.1 Hz) indicated that they were  $\alpha$ -L-rhamnose and  $\beta$ -D-glucose. The nature of sugars was confirmed by acid hydrolysis. The sequence of the sugars was determined as follows, a glycosylation shift was



|   | R <sup>1</sup> | R <sup>2</sup>        |                     |
|---|----------------|-----------------------|---------------------|
| 1 | Rha            | $\xrightarrow{2}$ Glc | ( sagittatoside A ) |
| 2 | Rha            | $\xrightarrow{2}$ Xyl | ( sagittatoside B ) |
| 3 | Rha            | $\xrightarrow{2}$ Glc | ( sagittatoside C ) |
|   | 3              | Ac                    |                     |
| 4 | Rha            | $\xrightarrow{2}$ Glc | ( epimedin A )      |
| 5 | Rha            | $\xrightarrow{2}$ Xyl | ( epimedin B )      |
| 6 | Rha            | $\xrightarrow{2}$ Rha | ( epimedin C )      |
| 7 | H              | Glc                   | ( icarisid I )      |
| 8 | Rha            | H                     | ( icarisid II )     |
| 9 | Rha            | Glc                   | ( icaritin )        |

Table 1  $^{13}\text{C}$  NMR chemical shifts of flavonol glycosides (**1**–**6**)

| C    | <b>1</b> | <b>2</b> | <b>3</b> | <b>4</b> | <b>5</b> | <b>6</b> |
|------|----------|----------|----------|----------|----------|----------|
| 2    | 156.4    | 156.4    | 156.7    | 157.8    | 157.3    | 157.1    |
| 3    | 134.6    | 134.4    | 133.4    | 134.8    | 134.8    | 134.4    |
| 4    | 177.8    | 177.9    | 177.8    | 178.2    | 178.5    | 178.1    |
| 5    | 161.6    | 161.3    | 161.7    | 160.4    | 160.6    | 160.4    |
| 6    | 98.2     | 98.4     | 98.3     | 98.2     | 98.5     | 98.0     |
| 7    | 161.2    | 162.0    | 161.4    | 161.4    | 161.5    | 161.3    |
| 8    | 105.9    | 106.2    | 105.9    | 108.2    | 108.5    | 108.2    |
| 9    | 153.6    | 153.6    | 153.7    | 152.9    | 153.1    | 152.9    |
| 10   | 104.0    | 103.5    | 104.0    | 105.9    | 105.7    | 105.4    |
| 1'   | 122.2    | 122.3    | 122.1    | 122.0    | 122.1    | 122.0    |
| 2'   | 130.3    | 130.2    | 130.4    | 130.4    | 130.5    | 130.4    |
| 3'   | 114.0    | 114.1    | 114.1    | 114.0    | 114.3    | 114.0    |
| 4'   | 158.7    | 158.8    | 158.7    | 159.0    | 159.2    | 159.0    |
| 5'   | 114.0    | 114.1    | 114.1    | 114.0    | 114.3    | 114.0    |
| 6'   | 130.3    | 130.2    | 130.4    | 130.4    | 130.5    | 130.4    |
| 11   | 21.0     | 21.1     | 21.2     | 21.3     | 21.5     | 21.3     |
| 12   | 122.1    | 122.3    | 122.2    | 122.0    | 122.3    | 122.0    |
| 13   | 130.9    | 130.9    | 130.9    | 130.9    | 131.2    | 131.0    |
| 14   | 25.3     | 25.3     | 25.3     | 25.3     | 25.6     | 26.3     |
| 15   | 17.2     | 17.7     | 17.0     | 17.3     | 17.9     | 17.4     |
| 1''  | 100.9    | 100.9    | 100.8    | 100.9    | 101.2    | 100.4    |
| 2''  | 81.1     | 80.5     | 76.9     | 81.2     | 80.8     | 75.4     |
| 3''  | 70.1     | 70.2     | 71.2     | 70.3     | 70.6     | 70.3     |
| 4''  | 71.6     | 71.6     | 68.1     | 71.5     | 71.8     | 71.8     |
| 5''  | 71.1     | 69.2     | 69.8     | 70.0     | 69.8     | 70.0     |
| 6''  | 17.6     | 17.3     | 17.7     | 17.7     | 17.5     | 17.5     |
| 1''' | 105.8    | 105.9    | 104.6    | 105.5    | 105.7    | 105.1    |
| 2''' | 73.7     | 73.6     | 73.0     | 73.8     | 73.5     | 70.3     |
| 3''' | 76.2     | 76.1     | 76.3     | 77.1     | 76.3     | 70.5     |
| 4''' | 69.2     | 70.1     | 69.3     | 69.1     | 70.6     | 71.2     |
| 5''' | 76.5     | 65.7     | 76.8     | 76.5     | 65.7     | 70.1     |
| 6''' | 60.4     |          | 61.0     | 60.3     |          | 17.5     |
|      |          |          |          | 100.5    | 100.7    | 100.6    |
|      |          |          |          | 73.3     | 73.5     | 73.2     |
|      |          |          |          | 76.5     | 76.7     | 76.5     |
|      |          |          |          | 69.5     | 69.8     | 69.5     |
|      |          |          |          | 79.0     | 77.3     | 77.1     |
|      |          |          |          | 60.5     | 60.8     | 60.5     |
| OMe  | 55.4     | 55.5     | 55.5     | 55.5     | 55.6     | 55.4     |
| Ac   |          | 169.0    |          |          |          | 20.7     |

All spectra were measured in  $\text{DMSO}-d_6$ . The carbons shown with two, three and four primes are those of the endo-sugar, the exo-sugar at C-3 and of  $\beta$ -D-glucose at C-7, respectively

observed at C-2'' (81.1 ppm) of rhamnose compared with that of icaritin (70.4 ppm) which showed  $\beta$ -D-glucose attached to C-2'' of  $\alpha$ -L-rhamnose, i.e. the sugar moiety is  $\beta$ -D-glucosyl-(1  $\rightarrow$  2)- $\alpha$ -rhamnose. Thus, **1** is anhydroicarinin 3-O- $\beta$ -D-glucosyl-(1  $\rightarrow$  2)- $\alpha$ -L-rhamnoside and is named sagittatoside A

Compound **2**, mp 160°, was obtained as a yellow powder. The EI mass fragments due to the aglycone moiety and the bathochromic shifts on addition to aluminium chloride or sodium acetate were closely similar to those of **1**. In the  $^{13}\text{C}$  NMR spectrum, all chemical shifts agreed well with those of **1** except those of the terminal sugar, which appeared as five peaks at 105.9, 76.1, 73.1, 70.1 and 65.7 ppm. These chemical shifts correspond to those of  $\beta$ -D-xylose. In the  $^1\text{H}$  NMR spectrum, two

anomeric protons were also observed at 4.16 ppm ( $J = 7.5$  Hz) and 5.31 ppm ( $J = 1.2$  Hz), which were assignable to that of  $\beta$ -D-xylose and  $\alpha$ -L-rhamnose, respectively. Furthermore, the chemical shifts of **2** are coincident to those of epimedin B (**5**) except for the carbons of one glucose substituted at C-7. The carbon of C-8 in **2** appeared at a higher field (2.3 ppm) compared with that of **5**, which also supports the absence of a sugar at C-7. An enzymatic hydrolysis of **5** with  $\beta$ -glucosidase gave **2**. Thus **2** is anhydroicarinin 3-O- $\beta$ -xylosyl-(1  $\rightarrow$  2)- $\alpha$ -L-rhamnoside and is named sagittatoside B.

Compound **3**, mp 143–144°, obtained as a yellow powder, was confirmed to possess an acetyl group by spectroscopic evidence,  $m/z$  43 (mass), 195 ppm (s) ( $^1\text{H}$  NMR), and 20.7 and 169.0 ppm ( $^{13}\text{C}$  NMR). On hydrolysis of **3** in alkali medium, sagittatoside A was detected by HPLC. The position of acetyl group was determined by comparison of the chemical shifts in the  $^{13}\text{C}$  NMR, the signals based on C-2 and C-4 of the L-rhamnose moiety shifted by –4.2 ppm and –3.5 ppm compared with those of **1**. The acetyl group was concluded to be substituted at C-3 of the rhamnose by the low-fielded shift caused by acetylation [3]. Consequently, **3** is anhydroicarinin 3-O- $\beta$ -D-glucosyl-(1  $\rightarrow$  2)- $\alpha$ -L-3-acetyl-rhamnoside, and is named sagittatoside C.

Compounds **4** (mp 167°), **5** (mp 172–174°) and **6** (mp 141°) were obtained as pale yellow powders. Their aglycones were the same as those of **1**–**3** by their  $^1\text{H}$  NMR and mass spectra. The UV and  $^{13}\text{C}$  NMR (Table 1) spectral data suggested that **4**–**6** were the known flavonol glycosides, epimedins A, B and C, isolated from *Epimedium koreanum* [2]. All six compounds **1**–**6** could be separated and quantified by HPLC on a cosmostil 5C<sub>18</sub> column with gradient elution (see Experimental).

## EXPERIMENTAL

Details of the apparatus used were described in our previous paper [1].

**Extraction and isolation of flavonol glycosides.** An 35% ethanolic extract of *Epimedium sagittatum*, described in detail in our previous paper [1], was subjected to a medium pressure (2–3 atom) liquid chromatography (eluent  $\text{CHCl}_3$ –MeOH 5:1 by gradient on silica gel column, acetonitrile (25%) by linear gradient on octadecylsilylated silica gel column). By combination of both column chromatography and recrystallization, compound **1** (20 mg), **2** (100 mg), **3** (15 mg), **4** (60 mg), **5** (50 mg) and **6** (200 mg) were obtained.

**Acid hydrolysis of **1**.** A 3%  $\text{H}_2\text{SO}_4$  soln (3 ml) of **1** (2 mg) was heated under reflux for 2 hr. The soln was neutralized with  $\text{BaCO}_3$ , and the filtrate was subjected to TLC (eluent  $\text{CHCl}_3$ –MeOH– $\text{H}_2\text{O}$  = 13:7:2 lower phase)  $\text{D}$ -glucose and L-rhamnose detected in the soln by spraying with 0.2% naphthoreresorcinol–ethanol (1:1) (heating 105°).

**Enzymatic hydrolysis.** A boric acid buffer soln (pH 5.0) containing epimedin B (**5**) (10 mg) and  $\beta$ -glucosidase (500 units) (2 mg) was incubated at 37° for 24 hr. The soln was compared by TLC ( $\text{CHCl}_3$ –MeOH– $\text{H}_2\text{O}$  = 13:7:2, lower phase) with sagittatoside B.

**Alkaline hydrolysis of **3**.** A 0.05 M NaOH soln (1 ml) containing **3** (2 mg) was warmed (60°) for 1 hr. After neutralization with 0.05 M HCl, the soln was subjected to HPLC (condition as undermentioned) to be confirmed the presence of **1**.

**HPLC equipment.** Liquid chromatograph Shimadzu LC-6A. Conditions: column, cosmostil 5C<sub>18</sub> (Nakarai chemicals Ltd) 250 mm  $\times$  4.1 d, flow rate, 1.2 ml min<sup>–1</sup> solvent acetonitrile gra-

dient, detection, UV 272 nm, chart speed, 2 mm/min.

**Compound 1 (sagittatoside A)**  $C_{33}H_{40}O_{15}$ , UV  $\lambda_{\text{max}}^{\text{MeOH}}$  nm 271, 299sh, 345, + NaOMe 284, 380, + AlCl<sub>3</sub> 280, 307sh, 345, 406, + AlCl<sub>3</sub>/HCl 281, 305sh, 340, 402, + AcONa 281, 314sh, 340, + AcONa/H<sub>3</sub>BO<sub>3</sub> 271, 372. EIMS (m/z) (rel. int.) 368 (aglycone, 89), 353 (aglycone-Me, 78), 313 (aglycone-C<sub>4</sub>H<sub>7</sub>, 100), 300 (49), 165 (22), 135 (62). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 300 MHz)  $\delta$  0.86 (3H, d,  $J = 5.9$  Hz, rhamnosyl Me), 1.62, 1.81 (each 3H, s, C<sub>14-15</sub>, Me), 2.98-4.93 (sugar protons), 3.13 (2H, m, H-11), 3.84 (3H, s, OMe), 4.09 (1H, m, rham, H-2), 4.24 (1H, d,  $J = 7.1$  Hz, glc, H-1), 5.15 (1H, br t,  $J = 5.0$  Hz, H-12), 5.53 (1H, d,  $J = 1.6$  Hz, rham, H-1), 6.31 (1H, s, H-6), 7.12 (2H, d,  $J = 8.4$  Hz, 3', 5'), 7.87 (2H, d,  $J = 8.4$  Hz, H-2', 6'), 10.83 (1H, s, C<sub>7</sub>-OH), 12.40 (1H, s, C<sub>5</sub>-OH)

**Compound 2 (sagittatoside B)**  $C_{32}H_{38}O_{14}$ , UV  $\lambda_{\text{max}}^{\text{MeOH}}$  nm 273, 310sh, 350, + NaOMe 282, 380, + AlCl<sub>3</sub> 282, 308sh, 344, 405, + AlCl<sub>3</sub>/HCl 282, 308sh, 344, 405, + AcONa 282, 345, + AcONa/H<sub>3</sub>BO<sub>3</sub> 272, 340. EIMS (m/z) (rel. int.) 368 (aglycone, 63), 353 (aglycone-Me, 60), 313 (aglycone-C<sub>4</sub>H<sub>7</sub>, 38), 300 (35), 165 (13), 135 (45). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 300 MHz)  $\delta$  0.88 (3H, d,  $J = 5.2$  Hz, rhamnosyl Me), 1.63, 1.69 (each 3H, s, C<sub>14-15</sub>, Me), 2.80-4.93 (sugar protons), 3.09 (2H, m, H-11), 3.85 (3H, s, OMe), 4.01 (1H, br s, rham, H-2), 4.16 (1H, d,  $J = 7.5$  Hz, xyl, H-1), 5.14 (1H, br t,  $J = 5.2$  Hz, H-12), 5.31 (1H, d,  $J = 1.2$  Hz, rham, H-1), 6.33 (1H, s, H-6), 7.13 (2H, d,  $J = 7.7$  Hz, H-3', 5'), 7.85 (2H,

d,  $J = 7.7$  Hz, H-2', 6'), 12.56 (1H, s, C<sub>5</sub>-OH).

**Compound 3 (sagittatoside C)**  $C_{35}H_{42}O_{16}$ , UV  $\lambda_{\text{max}}^{\text{MeOH}}$  nm 270, 314 sh, 350, + NaOMe 281, 380, + AlCl<sub>3</sub> 280, 308, 348, 410, + AlCl<sub>3</sub>/HCl 280, 307, 340, 410, + AcONa 281, 340, + AcONa/H<sub>3</sub>BO<sub>3</sub> 269, 312, 350. EIMS (m/z) (rel. int.) 368 (aglycone, 100), 353 (aglycone-Me, 78), 313 (aglycone-C<sub>4</sub>H<sub>7</sub>, 50), 300 (44), 165 (11), 153 (47), 43 (82). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 300 MHz)  $\delta$  0.84 (3H, d,  $J = 5.5$  Hz, rhamnosyl Me), 1.63, 1.68 (each 3H, s, C<sub>14-15</sub>, Me), 1.95 (3H, s, COMe), 2.98-4.96 (sugar protons), 3.20 (2H, m, H-11), 3.86 (3H, s, OMe), 4.23 (1H, d,  $J = 6.7$  Hz, glc, H-1), 5.17 (1H, br t,  $J = 5.0$  Hz, H-12), 5.39 (1H, brs, rham, H-1), 6.33 (1H, s, H-6), 7.16 (2H, d,  $J = 8.4$  Hz, H-3', 5'), 7.89 (2H, d,  $J = 8.4$  Hz, H-2', 6'), 12.45 (1H, s, C<sub>5</sub>-OH)

**Compound 4-6** Properties and spectra identical to those reported earlier [2]. For <sup>13</sup>C NMR data, see Table 1.

## REFERENCES

1. Mizuno, M., Hanioka, S., Suzuki, N., Iinuma, M., Tanaka, T., Liu, X. and Min, Z. (1987) *Phytochemistry* **26**, 861.
2. Oshima, Y., Okamoto, M. and Hikino, H. (1987) *Heterocycles* **26**, 935.
3. Mizuno, M., Kato, M., Iinuma, M., Tanaka, T., Kimura, A., Ohashi, H. and Sakai, H. (1987) *Phytochemistry* **26**, 2418